РМС-МедТур

Медицина и Туризм


Медицинский туризм - лечение и реабилитация






Rambler's Top100
Рейтинг@Mail.ru
liveinternet.ru: показано число просмотров за 24 часа, посетителей за 24 часа и за сегодня

АКСИОМАТИЧЕСКАЯ ТЕОРИЯ МНОЖЕСТВ

формулировка множеств теории в виде формальной (аксиоматической) системы (см. Аксиоматический метод). Основным побудительным стимулом для построения А. т. м.явилось открытие в "наивной" теории множеств Г. Кантора, предназначенной для обоснования классич. математики, парадоксов (антиномий), т. е. противоречий. Все эти парадоксы (напр., парадокс Кантора, связанный с рассмотрением "множества всех множеств", или парадокс Рассела, в к-ром рассматривается "множество всех множеств, не содержащих самих себя в качестве элемента") обусловлены неограниченным применением в канторовой теории множеств т. н. принципа свёртывания (или абстракции), согласно к-рому для всякого свойства существует множество, состоящее из всех предметов, обладающих этим свойством (этот принцип фактически содержится уже в первой фразе всех традиционных изложений теории множеств: "мы будем рассматривать произвольные множества элементов произвольной природы" и т. п.).

В первой из известных систем А. т. м.- системе Цермело - Френкеля, или ZF (сформулирована в 1908 Э. Цермело, пополнена в 1921-22 и позже А. Френкелем), принцип свёртывания заменяется несколькими его частными случаями: аксиомой существования пары {х,у} любых (данных) множеств х та. у, аксиомой существования объединения всех элементов произвольного множества x в новое множество S (x), аксиомой существования множества P(x) всех частей произвольного множества х, аксиомой существования бесконечного множества и т. н. схемами аксиом выделения (согласно к-рой для всякого множества х и свойства ф существует множество элементов х, обладающих свойством ф) и подстановки (утверждающей, что для любого взаимно однозначного отображения элементов множества x, описываемого на языке системы ZF, существует множество таких z, на к-рые отображаются эти элементы x). He подпадает под схему принципа свёртывания т. н. аксиома выбора (о существовании "множества представителей", т. е. множества содержащего в точности по одному элементу из каждого и-з данных непустых попарно непересекающихся множеств). Как и во всякой другой системе А. т. м., в ZF постулируется также аксиома объёмности (экстенсиональности), согласно к-рой множества, состоящие из одних и тех же элементов, совпадают. Иногда к ZF присоединяют и нек-рые др. аксиомы более спец. назначения. Формулы ZF получаются из "элементарных формул" вида x е у ("x принадлежит у") средствами исчисления предикатов.

Позднее были построены многочисл. видоизменения ZF и систем, отличающихся от ZF тем, что "плохие" (приводящие к парадоксам) совокупности элементов не вовсе исключаются из рассмотрения, а признаются "собственно классами", т. е. множествами, не могущими принадлежать в качестве элемента другим множествам (эта идея, идущая от Дж.Неймана, была затем развита швейц. математиком П. Бернайсом, К.Гёделем и др.). Системы эти, в отличие от ZF, могут быть заданы посредством конечного числа аксиом.

Другой подход к А. т. м. воплощён в теории типов Б. Рассела и А. Н. Уайтхеда (Англия, 1910-13) и её различных модификациях, в к-рых на аксиому свёртывания не накладывают типичных для ZF и др. систем ограничений, но реформируют сам язык теории: вместо одного алфавита переменных x, у, z.... вводится бесконечная последовательность алфавитов x1 y1, z1,..; x2, у2, z2...;...; хn, уn, zn,...;... различных "типов" п, а элементарные формулы имеют вид xn ? yn+1 или xnп. Теории типов строятся на основе исчисления предикатов с различными видами переменных [а при естеств. замене символики хп ? yп+1 на уn+1п) и xn = уn на х" ~ у" сами могут рассматриваться как системы расширенного исчисления предикатов, а не теории множеств]. В системе NF (New Foundation), введённой в 1937 амер. математиком У. в. О. Куайном, комбинируются оба упомянутых подхода: язык NF - тот же, что в ZF, а аксиомы свёртывания должны получаться из аксиом теории типов удалением индексов при переменных.

Для различных систем А. т. м. и отдельных их аксиом рассматривался вопрос об их (относительной) непротиворечивости. В 1940 К. Гёдель доказал относит, непротиворечивость аксиомы выбора и континуум-гипотезы (см. Континуума проблема) для описанной им системы Z и ZF; в дальнейшем этот результат был перенесён на теорию типов (самую слабую из перечисл. систем), а затем и на NF (в соответствующей форме). В 1963 амер. математик П. Дж. Коэн доказал для ZF (а тем самым и для Z) относит, непротиворечивость отрицания континуум-гипотезы, в т. ч. и в случае, если к ZF присоединена аксиома выбора. Он же доказал, что к, ZF можно присоединить без возникновения противоречия аксиому о том, что континуум не может быть вполне упорядочен (из этой аксиомы сразу следует отрицание аксиомы выбора).

Упомянутых ограничений на принцип свёртывания (или на язык системы) достаточно, чтобы в А. т. м. не возникал ни один из известных парадоксов. Однако проблема абс. непротиворечивости, ввиду теоремы Гёделя о неполноте (см. Метатеория), требует привлечения существенно новых идей. В частности, полученное в 1960 доказательство непротиворечивости ZF (и теории типов, но не NF) потребовало привлечения средств т. н. ультра-интуиционизма .

Лит.: Гёдель К., Совместимость аксиомы выбора и обобщённой континуум-гипотезы с аксиомами теории множеств, пер. с англ., "Успехи математических наук", 1948, т. 3, в. 1; Есенин -Вольпин А. С., К обоснованию теории множеств, в сб.: Применение логики в науке и технике, [М., 1960], с. 22-118; Френкель А. А. и Бар-Хиллел И., Основания теории множеств, пер. с англ., М., 1966 (библ.); Коэн П. Дж., Теория множеств и континуум-гипотеза, пер. с англ., М., 1969; Quine W. О. Van. Set theory and its logic, Camb., 1963.

Ю. А. Гостев, А. С. Есенин-Вольпин.

Куда обратиться с моим заболеванием?

ХОЧУ лечиться в МОСКВЕ